Christina is finding the values of x that make the following equation true.

Given
[tex]\tan^2(\frac{x}{2})+2\tan(\frac{x}{2})-5=3\tan(\frac{x}{2})[/tex]Find
Value of x that makes the equation true and what step will she take first
Explanation
to find the value of x , the first step we use
subtract
[tex]3\tan(\frac{x}{2})[/tex]from both sides
on subtraction , we obtain
[tex]\tan^2(\frac{x}{2})-\tan(\frac{x}{2})-5=0[/tex]now ,
[tex]\begin{gathered} \tan(\frac{x}{2})=\frac{-(-1)\pm\sqrt{(-1)^2-4\times1\times(-5)}}{2} \\ \\ \tan(\frac{x}{2})=\frac{1\pm\sqrt{21}}{2} \end{gathered}[/tex]Final Answer
The correct option is C.