Given the following expression
[tex]x^2+y^2\text{ + 6x - 10y - 2 = 0}[/tex]Firstly, we need to find the perfect square
[tex]\begin{gathered} \text{Collect the like terms} \\ x^2+6x+y^2\text{ - 10y = 2} \\ \text{ Find the p}\operatorname{erf}ect\text{ square} \\ x^2\text{ + (}\frac{6}{2}x)+y^2\text{ - (}\frac{10}{2}y)\text{ = 2} \\ x^2+3x+(3)^2+y^2-5y+(-5)^2\text{ = 2} \\ x^2+3x+9+y^2\text{ - 5y + 25 = 2} \\ \text{Add p}\operatorname{erf}ect\text{ square to both sides} \\ x^2+6x+y^2\text{ - 5y = 2 + 9 + 25} \end{gathered}[/tex]