SOLUTION:
Step 1 :
If x is a binomial random variable, compute p( x ) for the following:
a) n = 4, x = 1 , p = 0.6
Step 2:
[tex]\begin{gathered} U\sin g\text{ the binomial random variable, we have that:} \\ p^{}(x)=^nC_{x_{}}(p)^x(q)^{n\text{ - x}} \\ p\text{ + q = 1} \\ 0.6\text{ + q = 1} \\ \text{q = 1 - 0. 6} \\ q\text{ = 0. 4} \end{gathered}[/tex]Step 3:
[tex]\begin{gathered} p^{}(1)=^4C_1(0.6)^1(0.4)^{4-\text{ 1}}_{^{}^{}} \\ =4X0.6X(0.4)^3 \\ =\text{ 4 X }0.6\text{ X 0. 0064} \\ p(\text{ 1 ) = 0.1536 ( 4 decimal places)} \end{gathered}[/tex]CONCLUSION:
The final answer is:
[tex]p\text{ ( 1 ) = 0. 1536 ( 4 decimal places)}[/tex]