Given:
[tex]x^2+x+(p+7)=0[/tex]Let's find the value(s) of p where the equation will have equal roots.
To find the value of p, apply the quadratic formula:
[tex]p=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]When there are equal roots, the discriminant is zero.
Thus, we have:
[tex]D=b^2-4ac=0[/tex]Where:
a = 1
b = 1
c = (p + 7)
Thus, we have:
[tex]\begin{gathered} 1^2-4(1)(p+7)=0 \\ \\ 1^2-4p-4(7)=0 \\ \\ 1^2-4p-28=0 \\ \\ -4p-28+1=0 \\ \\ -4p-27=0 \end{gathered}[/tex]Now, let's solve for p.
Add 27 to both sides:
[tex]\begin{gathered} -4p-27+27=0+27 \\ \\ -4p=27 \\ \\ \text{ Divide both sides by -4:} \\ \frac{-4p}{-4}=\frac{27}{-4} \\ \\ p=-\frac{27}{4} \end{gathered}[/tex]Therefore, the value of p where the equation will have equal roots are:
[tex]-\frac{27}{4}[/tex]ANSWER:
[tex]p=-\frac{27}{4}[/tex]