Given:
[tex]\begin{gathered} 6x-2y=34\ldots\ldots\ldots\text{.}\mathrm{}(1) \\ -3x+3y=15\ldots\ldots\ldots\text{.}(2) \end{gathered}[/tex]Sol:.
Mutiply by 2 in equation (2) then.
[tex]\begin{gathered} -3x+3y=15 \\ 2(-3x+3y)=2\times15 \\ -6x+6y=30 \end{gathered}[/tex]Add both equation then:
[tex]\begin{gathered} 6x-2y=34 \\ -6x+6y=30 \\ \text{Add both equation:} \\ 6x-2y+(-6x)+6y=34+30 \\ 6x-6x+6y-2y=34+30 \\ 6y-2y=64 \\ 4y=64 \\ y=\frac{64}{4} \\ y=16 \end{gathered}[/tex]Put the value of y for find the value od "x"
[tex]\begin{gathered} 6x-2y=34 \\ y=16 \\ 6x-2(16)=34 \\ 6x-32=34 \\ 6x=34+32 \\ 6x=66 \\ x=\frac{66}{6} \\ x=11 \end{gathered}[/tex]So the value of "x" is 11 and value of "y" is 16 then:
[tex]\text{solution =(11,16)}[/tex]