Respuesta :

Given:

The points are

[tex](0,3),(4,9)[/tex]

To find:

The value of b.

Explanation:

Using the two-point formula,

[tex]\frac{y-y_1}{y_2-y_1}=\frac{x-x_1}{x_2-x_1}[/tex]

Substituting the values we get,

[tex]\begin{gathered} \frac{y-3}{9-3}=\frac{x-0}{4-0} \\ \frac{y-3}{6}=\frac{x}{4} \\ \frac{y-3}{3}=\frac{x}{2} \\ y-3=\frac{3}{2}x \\ y=\frac{3}{2}x+3 \\ y=1.5x+3 \end{gathered}[/tex]

It is of the slope-intercept form,

[tex]y=mx+b[/tex]

Comparing we get,

The value of b is 3.

Final answer:

The value of b is 3.

RELAXING NOICE
Relax