Given the expression:
[tex]\mleft(3x-5\mright)-4\mleft(x-2\mright)[/tex]You need to remember the following:
- The Sign Rules for Multiplication:
[tex]\begin{gathered} +\cdot+=+ \\ -\cdot-=+ \\ -\cdot+=- \\ +\cdot-=- \end{gathered}[/tex]- The Distributive Property:
[tex]\begin{gathered} a(b+c)=ab+ac \\ \\ a(b-c)=ab-ac \end{gathered}[/tex]Then, the steps to simplify the expression are:
1. Apply the Distributive Property:
[tex]\begin{gathered} =(3x-5)-(4)(x)+(4)(2) \\ =3x-5-4x+8 \end{gathered}[/tex]2. Finally, add the like terms:
[tex]=-x+3[/tex]Therefore, the answer is:
[tex]-x+3[/tex]