If (2.5) and (5,5) are the two end points of the circle, then the center of the circle is the midpoint
To find the midpoint, we will use the formula
[tex](x_m,y_m)=(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]x₁ = 2 y₁=5
x₂=5 y₂=5
Substitute into the formula and evaluate
[tex](x_m,y_m)=(\frac{2+5}{2},\frac{5+5}{2})[/tex][tex]=(\frac{7}{2},\frac{10}{2})[/tex][tex]=(\frac{7}{2},5)[/tex]Hence, the center of the circle is (7/2 , 5)
To find the radius, we can simply find the distance between the end points and divide by 2
Using the distance formula,
[tex]|d|=\sqrt[]{(5-2)^2+(5-5)^2}[/tex][tex]=\sqrt[]{3^2}=3[/tex]Hence, the radius is 3
The general formula for the equation of a circle centered (h,k) and radius r is given by
[tex](x-h)^2+(y-k)^2=r^2[/tex]substitute the values into the formula
[tex](x-\frac{7}{2})^2+(y-5)^2=3^2[/tex]Therefore, the equation of the circle is:
[tex](x-\frac{7}{2})^2+(y-5)^2=9[/tex]