First, find the inverse function of f(x). To do so, replace y=f(x) and isolate x from the equation:
[tex]\begin{gathered} f(x)=\frac{(x+2)}{3} \\ \Rightarrow y=\frac{(x+2)}{3} \\ \Rightarrow3y=x+2 \\ \Rightarrow3y-2=x \\ \therefore x=3y-2 \end{gathered}[/tex]Swap x and y to find the inverse function:
[tex]y=3x-2[/tex]Replace y=f¨-1(x):
[tex]f^{-1}(x)=3x-2[/tex]Notice that the inverse function is written in slope-intercept form, and the coefficient of the variable x is the slope. In this case, the coefficient of x is 3.
Therefore, the slope of the inverse function of f(x) is 3.