Respuesta :

Solution:

Given the function;

[tex]f(x)=10-3x^2[/tex]

The linear approximation formula is;

[tex]y=f(x)=f(a)+f^{\prime}(a)(x-a)[/tex]

Where;

[tex]a=-2[/tex]

Then, the derivative is;

[tex]f^{\prime}(x)=-6x[/tex][tex]\begin{gathered} f(a)=f(-2)=10-3(-2)^2 \\ f(a)=10-3(4)_{} \\ f(a)=10-12 \\ f(a)=-2 \end{gathered}[/tex]

Also,

[tex]\begin{gathered} f^{\prime}(a)=f^{\prime}(-2)=-6(-2) \\ f^{\prime}(a)=12 \end{gathered}[/tex]

Thus, the linear approximation is;

[tex]\begin{gathered} y=-2+12(x-(-2)) \\ y=-2+12(x+2) \\ y=-2+12x+24 \\ y=f(x)=12x+22 \end{gathered}[/tex]

FINAL ANSWER:

[tex]f(x)=12x+22[/tex]

RELAXING NOICE
Relax