Given,
The value of k is
[tex]k=\frac{2}{3}[/tex]The radius is
[tex]r=0.109\text{ m}[/tex]The mass is
[tex]m=0.407\text{ kg}[/tex]The angular speed is
[tex]\omega=98\text{ radians per second}[/tex]To find:
(a) What is the translational kinetic energy of the ball.
[tex]\begin{gathered} v=\omega r \\ v=98\times0.109 \\ v=10.682\text{ m/s} \end{gathered}[/tex]Now, kinetic energy is
[tex]\begin{gathered} KE=\frac{1}{2}\times0.407\times(10.682)^2 \\ KE=23.22\text{ J} \end{gathered}[/tex](b) The rotational kinetic energy is
[tex]\begin{gathered} KE=\frac{1}{2}I\omega^2 \\ KE=\frac{1}{2}\times mk^2\times\omega^2 \\ KE=\frac{1}{2}\times0.407\times(\frac{2}{3})^2\times(98)^2 \\ KE=8.86\text{ J} \end{gathered}[/tex](c) The ball then rolls up a hill.
What height will the ball reach before coming to rest?
[tex]\begin{gathered} KE=PE \\ \frac{1}{2}mv^2=mgh \\ \frac{v^2}{2}=gh \end{gathered}[/tex]The value of the acceleration due to gravity is 9.8 m/s^2.
Put the given values.
[tex]\begin{gathered} h=\frac{v^2}{2g} \\ h=\frac{(10.682)^2}{2\times9.8} \\ h=5.82\text{ m} \end{gathered}[/tex]Thus, the value of h is 5.82 m.