Respuesta :

Given the formula of the quartiles below

[tex]\begin{gathered} Q_1=\frac{1}{4}(N+1)^{th}term \\ Q_2=\frac{1}{2}(N+1)^{th}term \\ Q_3=\frac{3}{4}(N+1)^{th}term \end{gathered}[/tex]

where N = 50

Therefore,

[tex]\begin{gathered} Q_1=\frac{1}{4}(50+1)^{th}=\frac{1}{4}(51)=12.75th \\ Q_2=\frac{1}{2}(50+1)^{th}=\frac{1}{2}(51)=25.5th \\ Q_3=\frac{3}{4}(50+1)^{th}=\frac{3}{4}(51)=38.25th \end{gathered}[/tex]

Having gotten the position, let us now use it to obtain the values for each quartile.

[tex]\begin{gathered} Q_1=38 \\ Q_2=64 \\ Q_3=83 \end{gathered}[/tex]

Let us now sketch the box plot

Ver imagen RilyaI173672
RELAXING NOICE
Relax