Find the one-sided derivatives of the function f(x) = |x+ 18|at the point x= -18 if they exist. If the derivative does not exist write DNE for your answer.

Answer:
Left-hand derivative at x = -18 is -1
Right-hand derivative at x = -18 is 1
Explanation:
Given the function;
[tex]f(x)=|x+18|[/tex]We'll use the below formula to find the left-hand derivative of the above function;
[tex]f^{\prime}(a^-)=\lim _{h\to0^-}\frac{f(a+h)-f(a)}{h}[/tex]If we substitute and solve, we'll have;
[tex]\begin{gathered} f^{\prime}(a^-)=\lim _{h\to0^-}=\frac{|(-18+h)+18|-f(-18)}{h} \\ =\lim _{h\to0^-}=\frac{|(-18+h)+18|-0}{h} \\ =\lim _{h\to0^-}=\frac{|h|}{h} \end{gathered}[/tex]Since this is a left-hand derivative, therefore h < 0;
[tex]\lim _{h\to0^-}=\frac{-h}{h}=-1[/tex]Let's go ahead and determine the right-hand derivative using the below formula;
[tex]\begin{gathered} f^{\prime}(a^+)=\lim _{h\to0^+}\frac{f(a+h)-f(a)}{h} \\ f^{\prime}(a^+)=\lim _{h\to0^+}=\frac{|(-18+h)+18|-f(-18)}{h} \\ =\lim _{h\to0^+}=\frac{|(-18+h)+18|-0}{h} \\ =\lim _{h\to0^+}=\frac{|h|}{h} \end{gathered}[/tex]Since this is a right-hand derivative, so h > 0;
[tex]\lim _{h\to0^+}=\frac{h}{h}=1[/tex]For a function to be differentiable at any point, its left-hand and right-hand derivative must exist and they must coincide.
From the above, we have that the left-hand derivative = -1 and the right-hand derivative = 1.