Respuesta :

Given:

Number of sides of the polygon, n = 11

Let's find the approximate measure of one interior angle of the polygon.

To find the measure of one interior angle, apply the formula:

[tex]\text{ interior angle = }\frac{(n-2)\times180}{n}[/tex]

Where:

n = 11

Thus, we have:

[tex]\begin{gathered} \text{ interior angle = }\frac{(11-2)\times180}{11} \\ \\ \text{ interior angle = }\frac{(9)\times180}{11} \\ \\ \text{ interior angle = }\frac{1620}{11} \\ \\ \text{ interior angle = }147.27\degree\approx147.3\degree \end{gathered}[/tex]

Therefore, the approximate measure of one interior angle of the regular polygon is 147.3 degrees.

ANSWER:

D) 147.3°

RELAXING NOICE
Relax