Given the projectile motion as
[tex]\begin{equation*} 2+30t-16t^2 \end{equation*}[/tex]
We can find the values of t at h=15 below.
Explanation
At height 15, we will have that;
[tex]15=2+30t-16t^2[/tex]
Therefore,
[tex]\begin{gathered} 2+30t-16t^2=15 \\ \mathrm{Subtract\:}15\mathrm{\:from\:both\:sides} \\ 2+30t-16t^2-15=15-15 \\ \mathrm{Simplify} \\ -16t^2+30t-13=0 \\ \end{gathered}[/tex]
We can then solve the above with quadratic formula
[tex]\begin{gathered} t_{1,\:2}=\frac{-30\pm\sqrt{30^2-4\left(-16\right)\left(-13\right)}}{2\left(-16\right)} \\ t_{1,\:2}=\frac{-30\pm \:2\sqrt{17}}{2\left(-16\right)} \\ \mathrm{Separate\:the\:solutions} \\ t_1=\frac{-30+2\sqrt{17}}{2\left(-16\right)},\:t_2=\frac{-30-2\sqrt{17}}{2\left(-16\right)} \\ \mathrm{The\:solutions\:to\:the\:quadratic\:equation\:are:} \\ t=\frac{15-\sqrt{17}}{16},\:t=\frac{15+\sqrt{17}}{16} \\ t=0.68\:t=1.20 \end{gathered}[/tex]
Answer:
[tex]t=0.68;t=1.20[/tex]