Given:
a.) The area of a rectangle is 54 yd^2.
b.) The length of the rectangle is 3 yd. more than double the width.
Since it's said that the length of the rectangle is 3 yd. more than double the width, the length can also be written as:
L = 2W + 3
Recall: the formula for getting the area of a rectangle.
[tex]\text{ Area = L x W}[/tex]Let's now determine the dimensions of the rectangle. Let's first find the width.
[tex]\text{ Area = L x W}[/tex][tex]\text{ 54 = \lparen2W + 3\rparen\lparen W\rparen}[/tex][tex]\text{ \lparen2W + 3\rparen\lparen W\rparen = 54}[/tex][tex]\text{ 2W}^2\text{ + 3W = 54}[/tex][tex]\text{ 2W}^2\text{ + 3W - 54 = 0}[/tex]a = 2, b = 3 and c = -54
Let's use the quadratic formula to find W.
[tex]\text{ x = W = }\frac{-b\text{ }\pm\text{ }\sqrt{b^2-4ac}}{2a}[/tex][tex]\text{ = }\frac{-3\text{ }\pm\text{ }\sqrt{3^2-4(2)(-54)}}{2(2)}[/tex][tex]\text{ = }\frac{-3\text{ }\pm\text{ }\sqrt{9\text{ + 432 }}}{4}[/tex][tex]\text{ = }\frac{-3\text{ }\pm\text{ }\sqrt{441}}{4}\text{ = }\frac{-3\text{ }\pm21}{4}[/tex][tex]\text{ W}_1\text{ = }\frac{-3\text{ + 21}}{4}\text{ = }\frac{18}{4}\text{ = }\frac{9}{2}[/tex][tex]\text{ W}_2\text{ = }\frac{-3\text{ - 21}}{4}\text{ = }\frac{-24}{4}\text{ = -6}[/tex]Therefore, the width of the rectangle is 9/2 or 4.5 yards because it could never be a negative number.
Let's now find the length.
L = 2W + 3 = 2(9/2) + 3 = 9 + 3 = 12 yards
In Summary,
Width = 4.5 yards
Length = 12 yards