The volume of a sphere can be calculated using this formula:
[tex]V=\frac{4}{3}\pi r^3[/tex]Where "r" is the radius of the sphere and "V" is the volume of the sphere.
If you solve for "r", you get this new formula:
[tex]r=\sqrt[3]{\frac{3V}{4\pi}}[/tex]In this case you know that:
[tex]V\approx7,238.23\operatorname{mm}^3[/tex]Therefore, you can substitute this value into the second formula and then evaluate, in order to find the radius of this sphere:
[tex]\begin{gathered} r=\sqrt[3]{\frac{(3)(7,238.23\operatorname{mm}^3)}{4\pi}} \\ \\ r\approx12\operatorname{mm} \\ \end{gathered}[/tex]The answer is:
[tex]r\approx12\operatorname{mm}[/tex]