Given:
Center of circle: (-4, 7)
Endpoint on the circle: (8, -4)
Let's write the equation of the circle with the given information.
Apply the equation of a circle:
[tex](x-h)^2+(y-k)^2=r^2[/tex]Where:
Center of circle: (h, k) ==> (-4, 7)
Radius = r
Substitute the values of (h, k) in the equation:
[tex]\begin{gathered} (x-(-4))^2+(y-7)^2=r^2 \\ \\ (x+4)^2+(y-7)^2=r^2 \end{gathered}[/tex]To find the radius, let's find the distance between the points (-4, 7) and (8, -4).
Apply the distance formula:
[tex]d=\sqrt[]{(y2-y1)^2+(x2-x1)^2}[/tex]Given:
(x1, y1) ==> (-4, 7)
(x2, y2) ==> (8, -4)
Thus, we have:
[tex]\begin{gathered} d=\sqrt[]{(-4-7)^2+(8-(-4))^2} \\ \\ d=\sqrt[]{(-4-7)^2+(8+4)^2} \\ \\ d=\sqrt[]{(11)^2+(12)^2} \\ \\ d=\sqrt[]{121+144} \\ \\ d=\sqrt[]{265} \\ \\ d=16.3 \end{gathered}[/tex]Therefore, the radius is 16.3
Therefore, we have the equation of the circle as:
[tex](x+4)^2+(y-7)^2=16.3^2[/tex]ANSWER:
[tex](x+4)^2+(y-7)^2=16.3^2[/tex]