In order to find the sequence represented by the given explicit
formula we have to plug in the values of n.
The formula is
[tex]a_n=-4(-2)^n[/tex]hence, for n=1, we have
[tex]a_1=-4(-2)^1[/tex]which is equal to
[tex]\begin{gathered} a_1=-4(-2)^{} \\ a_1=8 \end{gathered}[/tex]In the same way, for n=2, we have
[tex]\begin{gathered} a_2=-4(-2)^2 \\ a_2=-4(4) \\ a_2=-16 \end{gathered}[/tex]For n=3, it yields
[tex]\begin{gathered} a_3=-4(-2)^3 \\ a_3=-4(-8) \\ a_3=32 \end{gathered}[/tex]For n=4, we obtain
[tex]\begin{gathered} a_4=-4(-2)^4 \\ a_4=-4(16) \\ a_4=-64 \end{gathered}[/tex]and so on.
Now,
[tex]\begin{gathered} a_{n-1}=-4(-2)^{n-1} \\ a_{n-1}=-4(-2)^n(-2)^{-1} \\ a_{n-1}=\frac{-4(-2^{})^n}{-2} \\ -2\cdot a_{n-1}=-4(-2)^n \end{gathered}[/tex]since, we know that
[tex]\begin{gathered} a_n=-4(-2)^n \\ we\text{ have } \\ -2\cdot a_{n-1}=a_n \end{gathered}[/tex]in other words, we have that
[tex]a_n=-2\cdot a_{n-1}[/tex]