The population, P, of a species of fish is decreasing at a rate that is proportional to the population itself. If P=200000 when t=3 and P=150000 when t=4, what is the population when t=10?Round your answer to the nearest integer.

As we know, the type of function that can be used to modelate populations is the exponential function, which, in our case will look like the following:
[tex]P(t)=P_0e^{-\lambda t}[/tex]Where P0 is the initial population, and lambda is a parameter which tells us how fast the population decays. By replacing the values we have, we get:
[tex]2*10^5=P_0e^{-3\lambda},\text{ }1.5*10^5=P_0e^{-4\lambda}[/tex]In order to find out the first parameter, let us divide both equations:
[tex]\frac{2*10^5}{1.5*10^5}=\frac{P_0e^{-3\lambda}}{P_0e^{-4\lambda}}=e^{-3\lambda+4\lambda}=e^{\lambda}[/tex][tex]e^{\lambda}=\frac{2}{1.5}\Rightarrow\lambda=ln(\frac{4}{3})[/tex]With this, we can find out the initial population by replacing lambda on any equation:
[tex]2*10^5=P_0e^{-3*ln(\frac{4}{3})}\Rightarrow P_0=\frac{2*10^5}{e^{-3ln(\frac{4}{3})}}\approx474074.0741[/tex]Thus, the population when t=10 will be approximately:
[tex]P(10)\approx474074.0741e^{-10*ln(\frac{4}{3})}=26696.77734[/tex]Thus, our answer is P(10)=26697