Given data:
The tensile strength of the string is,
[tex]F^{\prime}=144\text{ N}[/tex]
The mass of the car is,
[tex]m=3.2\text{ kg}[/tex]
The length of the string is,
[tex]\begin{gathered} r=125\text{ cm} \\ r=1.25\text{ m} \end{gathered}[/tex]
The force acting on the car is,
[tex]F^{\prime}=\frac{mv}{r}^2[/tex]
where a is the linear acceleration and m is the mass of the car.
Substituting the known values,
[tex]\begin{gathered} 144=\frac{3.2\times v^2}{1.25} \\ v^2=56.25 \\ v=7.5ms^{-1} \end{gathered}[/tex]
Thus, the angular speed of the car is,
[tex]\begin{gathered} \omega=\frac{v}{r} \\ \omega=\frac{7.5}{1.25} \\ \omega=6 \end{gathered}[/tex]
Each distance of each revolution is,
[tex]\begin{gathered} d=2\pi r \\ d=2\pi\times1.25 \\ d=7.85 \end{gathered}[/tex]
Thus, the value of angular speed in terms of revolution is,
[tex]\begin{gathered} \omega=\frac{6}{7.85} \\ \omega=0.76\text{ revolution per second} \\ \omega=0.76\times60\text{ revolutions per minute} \\ \omega=45.6\text{ revolutions per minute} \end{gathered}[/tex]
Thus, the maximum angular speed of the toy car is 45.6 revolutions per minute.