Given the equation:
[tex]5x^2+9x+h=0[/tex]we will find the value of h which the quadratic equation has two real solutions
We will use the discriminant of the equation (D)
[tex]\begin{gathered} a=5,b=9,c=h \\ D=b^2-4ac \end{gathered}[/tex]substitute with the values of a, b, and c
[tex]\begin{gathered} D=9^2-4\cdot5\cdot h \\ D=81-20h \end{gathered}[/tex]the quadratic equation has two real solutions when D≥0
So,
[tex]\begin{gathered} 81-20h\ge0 \\ -20h\ge-81\rightarrow(\div-20) \\ \frac{-20h}{-20}\le\frac{-81}{-20} \\ \\ h\le4.05 \end{gathered}[/tex]So, the answer will be:
[tex]h\le4.05[/tex]