Step 1
Given;
[tex]\begin{gathered} First\text{ term\lparen a}_1)=14 \\ a_{13}=-58 \end{gathered}[/tex]Step 2
Find the 32nd term
State the nth term of an A.P
[tex]\begin{gathered} a_n=a_1+(n-1)d \\ \end{gathered}[/tex]Find the equation for the 13th term
[tex]\begin{gathered} a_{13}=14+(13-1)d \\ -58=14+12d \end{gathered}[/tex]Find d, the common difference
[tex]\begin{gathered} -58=14+12d \\ 12d=-58-14 \\ \frac{12d}{12}=-\frac{72}{12} \\ d=-6 \end{gathered}[/tex]Step 3
Find the 32nd term
[tex]\begin{gathered} a_{32}=a_1+(32-1)d \\ a_{32}=14+31(-6) \\ a_{32}=-172 \end{gathered}[/tex]Answer;
[tex]The\text{ 32nd term=-172}[/tex]