find the perimeter as a radical expression in simplest form

Answer:
The perimeter of the figure, in it's simplest form, is 2(1 + 5*sqrt(6)) feet
Step-by-step explanation:
The perimeter of a figure is the sum of all dimensions of the figure.
In this question, the perimeter is:
[tex]2+\sqrt{54}+\sqrt{54}+2\sqrt{24}[/tex]Adding like terms:
[tex]2+\sqrt{54}+\sqrt{54}+2\sqrt{24}=2+2\sqrt{54}+2\sqrt{24}[/tex]Now we have to factorize 54 and 24
Factorization of 54:
We go dividing by prime numbers.
54|2
27|3
9|3
3|3
1
So: 54 = 2*3*3*3 = 2*3³
Factorization of 24:
24|2
12|2
6|2
3|3
1
So 24 = 2*2*2*3=2³*3
Simplifying:
[tex]2+2\sqrt{54}+2\sqrt{24}=2+2\sqrt{2\ast3^3}+2\sqrt{2^3\ast3}^{}[/tex]Now we continue working to place in the simplest form
[tex]2+2\sqrt{2\ast3^3}+2\sqrt{2^3\ast3}=2+2\sqrt{2\ast3\ast3^2}+2\sqrt{2^2\ast2\ast3}[/tex]Now, for the radicals, we have that:
[tex]\sqrt{2\ast3\ast3^2}=\sqrt{6\ast9}=\sqrt{6}\ast\sqrt{9}=3\sqrt{6}[/tex][tex]\sqrt{2^2\ast2\ast3}=\sqrt{4\ast6}=\sqrt{4}\ast\sqrt{6}=2\sqrt{6}[/tex]Then
[tex]2+2\sqrt{2\ast3\ast3^2}+2\sqrt{2^2\ast2\ast3}=2+2\ast3\sqrt{6}+2\ast2\sqrt{6}[/tex]Finally:
[tex]2+2\ast3\sqrt{6}+2\ast2\sqrt{6}=2+6\sqrt{6}+4\sqrt{6}=2+10\sqrt{6}=2(1+5\sqrt{6})[/tex]The perimeter of the figure, in it's simplest form, is 2(1 + 5*sqrt(6)) feet