Respuesta :
[tex]c=-0.08x+160\rightarrow\text{ model}[/tex]
b)50 computers
Explanation
Step 1
let c represents the number of computers
let p represents the price per computer
so
[tex]c=f(p)[/tex]so
a)Eighty computers are sold when priced at 1,000
[tex]\begin{gathered} c=80 \\ p=1000 \\ so\text{ } \\ (1000,80) \end{gathered}[/tex]b)when priced at 750 all 100 computers are sold
[tex]\begin{gathered} c=100 \\ p=750 \\ (750,100) \end{gathered}[/tex]now, we have 2 points ( coordinates )
[tex]\begin{gathered} P1(1000,80) \\ P2(750,100) \end{gathered}[/tex]Step 2
find the equation of the line:
a) find the slope
the slope of a line is given by:
[tex]\begin{gathered} \text{slope}=\frac{\Delta y}{\Delta x}=\frac{y_2-y_1}{x_2-x_1} \\ \text{where } \\ P1(x_1,y_1) \\ \text{and } \\ P2(x_2,y_2) \end{gathered}[/tex]so, let
P1(1000,80)
P2(750,100)
now, replace
[tex]\begin{gathered} \text{slope}=\frac{y_2-y_1}{x_2-x_1} \\ \text{slope}=\frac{100-80}{750-1000}=\frac{20}{-250}=-0.08 \end{gathered}[/tex]b) equation:
to find the equation we can use the slope-point formula
[tex]\begin{gathered} y-y_1=m(x-x_1) \\ \text{where m is the slope and } \\ (x_1,y_1) \\ is\text{ a point of the line} \end{gathered}[/tex]let
[tex]\begin{gathered} \text{slope}=-0.08 \\ P(1000,80) \end{gathered}[/tex]replace
[tex]\begin{gathered} y-y_1=m(x-x_1) \\ y-80=-0.08(x-1000) \\ y-80=-0.08x+80 \\ \text{add 80 in both sides} \\ y-80+80=-0.08x+80+80 \\ y=-0.08x+160 \end{gathered}[/tex]rewrite usign the defined variables
[tex]c=-0.08x+160\rightarrow\text{ model}[/tex]Step 3
how many computers the company would sell if priced at 1,375 each ?
let
p=1375
replace and calculate
[tex]\begin{gathered} c=-0.08x+160\rightarrow\text{ model} \\ c=-0.08(1375)+160 \\ c=-110+160 \\ c=50 \end{gathered}[/tex]so,
if the price were 1375 each , 50 computers would be sold
I hope this helps you
