A cooling tower, such as the one shown in the figure

Step 1
State the standard form of a hyperbola with the horizontal transverse axis with center at (0,0)
[tex]\frac{x^2}{a^2}-\frac{y^2}{b^2}=1[/tex]Step 2
For a hyperbola with the horizontal transverse axis with center at (0,0)
[tex]\begin{gathered} Length\text{ of horizontal transverse axis }=48=2a \\ \text{Therefore} \\ a=\frac{48}{2}=24 \end{gathered}[/tex]Points to work with include;
[tex]\begin{gathered} one\text{ corner of the base -(50,-84)} \\ one\text{ corner of the top- (}x,36) \\ At\text{ the center- (}24,0) \end{gathered}[/tex]Step 3
Using points (50,-84) to find b²
We have;
[tex]\begin{gathered} \frac{50^2}{24^2}-\frac{(-84)^2}{b^2}=1 \\ \frac{50^2}{24^2}-\frac{7056}{b^2}=1 \\ \frac{50^2}{24^2}-1=\frac{7056}{b^2} \end{gathered}[/tex][tex]\begin{gathered} 3.340277778=\frac{7056}{b^2} \\ 3.340277778b^2=7056 \\ b^2=\frac{7056}{3.340277778} \\ b^2=\frac{7056}{3.340277778} \\ b^2=2112.399168 \end{gathered}[/tex]Step 4
Solve for the x-coordinate of the right corner of the top
[tex]\begin{gathered} The\text{ equation now becomes} \\ \frac{x^2}{24^2}-\frac{36^2}{2112.399168}=1 \\ \frac{x^2}{24^2}=1+\frac{36^2}{2112.399168} \\ \frac{x^2}{24^2}=\frac{1265}{784} \\ 784x^2=728640 \\ x^2=\frac{728640}{784} \\ x^2=\frac{45540}{49} \\ x=\sqrt[]{\frac{45540}{49}} \\ x=30.48586156 \end{gathered}[/tex]But the diameter at the top = 2x
Therefore,
[tex]\begin{gathered} 2(30.48586156)=60.97172312 \\ \approx60.97\text{meters} \end{gathered}[/tex]Hence approximately to 2, decimal places the diameter at the top = 60.97 meters