Respuesta :

SOLUTION:

Step 1 :

In this question, we can see clearly that:

[tex]\text{Triangle LMN }\approx\text{ Triangle PON}[/tex]

Step 2:

From the diagram, we can see that :

[tex]\frac{MN}{LM}\text{ = }\frac{ON}{OP}[/tex]

where MN = x,

LM = 42,

ON = 12,

OP = 14.

Step 3:

Substituting the values, we have that:

[tex]\begin{gathered} \frac{x}{42}\text{ = }\frac{12}{14} \\ \text{cross - multiply, we have that:} \\ 14\text{ x = 12 ( 42 )} \\ \text{Divide both sides by 14 , we have that:} \end{gathered}[/tex][tex]\begin{gathered} x\text{ = }\frac{12(\text{ 42 )}}{14} \\ x\text{ = 12 x 3} \\ \text{x = 36 - OPTION D} \end{gathered}[/tex]

CONCLUSION :

The value of x = 36 -- OPTION D .

RELAXING NOICE
Relax