Given:
The mass of the truck is m1 = 912 kg
The initial velocity of the truck is
[tex]\begin{gathered} v_{1i}=\text{ 59.6 km/h} \\ =59.6\times\frac{1000\text{ m}}{3600\text{ s}} \\ =\text{ 16.556 m/s} \end{gathered}[/tex]The mass of the car is m2 = 618 kg
The initial velocity of the car is
[tex]v_{2i}=\text{ 0 m/s}[/tex]To find the velocity of the truck and car after the collision.
Explanation:
According to the conservation of momentum,
[tex]\begin{gathered} m1v_{1i}+m1v_{2i}=\text{ \lparen m1+m2\rparen v}_f \\ v_f=\frac{m1v_{1i}+m1v_{2i}}{m1+m2} \end{gathered}[/tex]On substituting the values, the magnitude of velocity after the collision will be
[tex]\begin{gathered} v_f=\frac{(912\times\text{ 16.556\rparen -\lparen618}\times0\text{\rparen }}{(912+618)} \\ =\text{ 9.86 m/s} \end{gathered}[/tex]Thus, the magnitude of velocity after the collison is 9.86 m/s