For a normal distribution, the standard score is given by the formula:
[tex]\begin{gathered} z=\frac{x-\mu}{\sigma} \\ z\colon\text{standard score} \\ x\colon\text{observed score} \\ \mu\colon\operatorname{mean}\text{ of the sample} \\ \sigma\colon\text{standard deviation of the sample} \end{gathered}[/tex]From the question, we are provided with the following information:
[tex]\begin{gathered} x=160 \\ \mu\colon121 \\ \sigma\colon20 \end{gathered}[/tex]Thus, we have:
[tex]\begin{gathered} z=\frac{160-121}{20} \\ z=\frac{39}{20} \\ z=1.95 \end{gathered}[/tex]Probability of z>1.95 is 0.02558 or 2.558%
Hence, the percentage of adults in the USA that have stage 2 high blood pressure is 2.558%