Answer:
5x+y-8=0.
Explanation:
Given the equation of the line:
[tex]x-5y-8=0[/tex]Expressing the line in slope-intercept form:
[tex]\begin{gathered} 5y=x-8 \\ y=\frac{1}{5}x-\frac{8}{5} \\ \implies\text{Slope of the line }=\frac{1}{5} \\ \implies\text{Slope of the perpendicular line }=-5 \end{gathered}[/tex]If the perpendicular line passes through (2,-2), using the slope-point form:
[tex]y-y_1=m(x-x_1)[/tex]This gives:
[tex]\begin{gathered} y-(-2)=-5(x-2) \\ y+2=-5x+10 \\ 5x+y+2-10=0 \\ 5x+y-8=0 \end{gathered}[/tex]The equation of the perpendicular line is 5x+y-8=0.