Respuesta :

Given:

[tex]\sum_{n\mathop{=}1}^{\infty}\frac{(np)^{-2}}{\frac{2}{n^2}+\frac{3}{n}+1}[/tex]

Find-:

Find the formula for n partial sum, and determine whether the series converges or diverges.

Explanation-:

The value is:

[tex]\begin{gathered} =\sum_{n\mathop{=}1}^{\infty}\frac{(np)^{-2}}{\frac{2}{n^2}+\frac{3}{n}+1} \\ \\ =\sum_{n\mathop{=}1}^{\infty}\frac{1}{n^2p^2(\frac{1}{n^2}+\frac{3}{n}+1)} \\ \\ =\sum_{n\mathop{=}1}^{\infty}\frac{1}{p^2(\frac{n^2}{n^2}+\frac{3n^2}{n}+n^2)} \\ \\ =\sum_{n\mathop{=}1}^{\infty}\frac{1}{p^2(1+3n+n^2)} \end{gathered}[/tex]

So, the value is,

[tex]=\frac{1}{p^2}\sum_{n\mathop{=}1}^{\infty}\frac{1}{n^2+3n+1}[/tex]

Apply telescoping series

[tex]\sum_{n\mathop{=}1}^{\infty}\frac{1}{n^2+3n+1}=\frac{1}{2}[/tex]

The value is:

[tex]\begin{gathered} =\frac{1}{p^2}\times\frac{1}{2} \\ \\ =\frac{1}{2p^2} \end{gathered}[/tex]

It is a series of converges.

[tex]\begin{gathered} =\frac{1}{2p^2} \\ \\ =\frac{1}{2(2)^2} \\ \\ =\frac{1}{2\times4} \\ \\ =\frac{1}{8} \end{gathered}[/tex]

RELAXING NOICE
Relax