Let x be the height of the building
We will first make a sketch
[tex]\tan \theta=\frac{opposite}{\text{adjacent}}[/tex][tex]\tan 25.8=\frac{x}{y}[/tex][tex]y=\frac{x}{\tan 25.8}[/tex][tex]\tan 34.1=\frac{95.2+x}{y}[/tex]substitute the y-value in the above
[tex]\tan 34.1=\frac{95.2+x}{\frac{x}{\tan 25.8}}[/tex][tex]\tan 34.1=(95.2+x)\text{.}\frac{tan25.8}{x}[/tex][tex]x\tan 34.1=(95.2+x)\tan 25.8[/tex]x (0.677) = (95.2 + x)0.4834
open the parenthesis
0.677x = 46.01968 + 0.4834x
subtract 0.4834x from both-side of the equation
0.677x - 0.4834x = 46.01968
0.1936x = 46.01968
Divide both-side by 0.1936
x≈ 237.7 ft
[tex]x\approx238\text{ f}eet[/tex]