Find all y-intercepts and x-intercepts of the graph of the function.If there is more than one answer, separate them with commas. Click on "None" if applicable.

Given
[tex]y=f(x)=2x^3+8x^2-2x-8[/tex]Find
x-intercept and y-intercept
Explanation
To find the y intercept, put x=0 in the above equation
[tex]\begin{gathered} y=f(x)=2(0)^3+8(0)^2-2(0)-8 \\ y=-8 \end{gathered}[/tex]Now Finding x intercept
[tex]\begin{gathered} f(x)=2x^3+8x^2-2x-8 \\ f(1)=2(1)^3+8(1)^2-2(1)-8 \\ f(1)=0 \end{gathered}[/tex]Therefore x-1 is a factor of the above equation
Divide f(x) with x-1, we get
[tex]\begin{gathered} \frac{2x^3+8x^2-2x-8}{x-1} \\ =2x^2+10x+8 \end{gathered}[/tex]Now finding the factors of this quadratic equation
[tex]\begin{gathered} 2x^2+10x+8=0 \\ 2x^2+8x+2x+8=0 \\ 2x(x+4)+2(x+4)=0 \\ (x+4)(2x+2)=0 \\ (x+4)(x+1)=0 \end{gathered}[/tex]Therefore,
x=-4,-1
Final Answer
x-intercepts = 1,-1,-4
y-intercepts= -8