Use special right triangle ratios to find the length of the hypotenuseA. 15 square root 3B. 30C. 15D. 15square root 2

EXPLANATION
To find the length of the hypotenuse using the right triangle ratio
Since the angles are in the ratio
[tex]45^0,45^0,90^0[/tex]So the side ratio will be in the ratio
[tex]1\colon1\colon\sqrt[]{2}[/tex]Thus,
If x = 15 and the hypotenuse is y
Then
[tex]\begin{gathered} 45^0\colon45\colon90^0 \\ 15\colon x\colon y \\ 1\colon1\colon\sqrt[]{2} \end{gathered}[/tex]Thus, from the above relationship
[tex]\begin{gathered} x=15 \\ y=15\times\sqrt[]{2}=15\sqrt[]{2} \end{gathered}[/tex]Therefore, the hypotenuse is
[tex]15\sqrt[]{2}[/tex]