Given:
An airplane can travel 370 mph in still air
If it travels 2737 miles with the wind in the same direction of the speed
Let, the speed of the wind = x
speed = distance over the time
[tex]x+370=\frac{2737}{t}\rightarrow(1)[/tex]And it travels 2443 miles at the same time against the wind
[tex]-x+370=\frac{2443}{t}\rightarrow(2)[/tex]Solve the equations to find x, and t
Add the equations:
[tex]\begin{gathered} 370\cdot2=\frac{1}{t}(2737+2443) \\ t=\frac{2737+2443}{2\cdot370}=7 \end{gathered}[/tex]Substitute with (t) into equation (1) to find (x)
[tex]\begin{gathered} x+370=\frac{2737}{7} \\ x+370=391 \\ x=391-370 \\ x=21 \end{gathered}[/tex]So, the answer will be:
The speed of the wind = 21 mph