Given
The line passes through the points,
[tex](-3,9),(-\frac{1}{2},-\frac{7}{2})[/tex]To find the equation of the line and write in the standard form.
Now,
The equation of the line passing through two points is given by,
[tex]\frac{y_{}-y_1}{y_2-y_1}=\frac{x_{}-x_1}{x_2-x_1}[/tex]Since the points are
[tex](-3,9),(-\frac{1}{2},-\frac{7}{2})[/tex]Then, the equation of the line is,
[tex]\begin{gathered} \frac{y-9}{-\frac{7}{2}-9}=\frac{x-(-3)}{-\frac{1}{2}-(-3)} \\ \frac{y-9}{\frac{-7-18}{2}}=\frac{x+3}{\frac{-1+6}{2}} \\ \frac{y-9}{-25}=\frac{x+3}{5} \\ \frac{y-9}{-5}=x+3 \\ y-9=-5(x+3) \\ y-9=-5x-15 \\ y=-5x-15+9 \\ y=-5x-6 \end{gathered}[/tex]Hence, the equation of the line is,
[tex]y=-5x-6[/tex]And, the standard form of the line is,
[tex]5x+y+6=0[/tex]