Given: the figures LMNO and EFGH
WE will find the length of each side of the figure LMNO
AS shown:
[tex]\begin{gathered} LM=3 \\ MN=\sqrt[]{2^2+4^2}=\sqrt[]{20}=2\sqrt[]{5} \\ NO=\sqrt[]{6^2+2^2}=\sqrt[]{40}=2\sqrt[]{10} \\ OL=\sqrt[]{1^2+2^2}=\sqrt[]{5} \end{gathered}[/tex]Now, we will find the length of each side of the figure EFGH:
[tex]\begin{gathered} FG=4 \\ GH=\sqrt[]{3^2+3^2}=\sqrt[]{18}=3\sqrt[]{2} \\ HE=\sqrt[]{1^2+3^2}=\sqrt[]{10} \\ EF=\sqrt[]{2^2+4^2}=\sqrt[]{20}=2\sqrt[]{5} \end{gathered}[/tex]By comparing the lengths of the corresponding sides
The figures are not congruent and not similar
So, the answer will be neither congruent nor similar