Respuesta :

Given the function below

[tex]\begin{gathered} f(x)=\frac{2}{x-5} \\ \therefore y=\frac{2}{x-5} \end{gathered}[/tex]

The inverse of the function is denoted by

[tex]f^{-1}(x)_{}[/tex]

It can be obtained through the process below

[tex]y=\frac{2}{x-5}[/tex]

Swap the position of y and x in the equation above

[tex]x=\frac{2}{y-5}[/tex]

Solve for y in the resulting equation from the swap

[tex]\begin{gathered} By\text{ cross multiplying} \\ x(y-5)=2 \\ \text{Divide both sides by x} \\ \frac{x(y-5)}{x}=\frac{2}{x} \end{gathered}[/tex][tex]\begin{gathered} y-5=\frac{2}{x} \\ \text{Add -5 to both sides} \\ y-5+5=\frac{2}{x}+5 \end{gathered}[/tex][tex]y=\frac{2}{x}+5[/tex]

Hence, the inverse of f(x) is

[tex]f^{-1}(x)=\frac{2}{x}+5[/tex]

RELAXING NOICE
Relax