SOLUTION
Given the question in the question tab, the following are the solution steps to find the derivative of the function
STEP 1: Write the given function
[tex]2x^2-4x+3[/tex]STEP 2: Find the derivative of the function
[tex]\begin{gathered} 2x^2-4x-3 \\ \frac{d}{dx}\mleft(2x^2-4x-3\mright) \\ \mathrm{Apply\: the\: Sum/Difference\: Rule}\colon\quad \mleft(f\pm g\mright)^{\prime}=f\: ^{\prime}\pm g^{\prime} \\ =\frac{d}{dx}\mleft(2x^2\mright)-\frac{d}{dx}\mleft(4x\mright)-\frac{d}{dx}\mleft(3\mright) \\ \text{Derivative of a constant is 0} \\ =4x-4-0 \\ =4x-4 \end{gathered}[/tex]Hence, the derivative of the given function is 4x-4