Answer:
x = -4
y = 2
Step-by-step Explanation:
Given the below system of equations;
[tex]\begin{gathered} 3x+5y=-2\ldots.\ldots\ldots\text{.Equation 1} \\ 3x-2y=-16\ldots\ldots\ldots\text{.}\mathrm{}\text{Equation 2} \end{gathered}[/tex]We'll go ahead and solve the above system of equations using the elimination method following the below steps;
Step 1: Subtract Equation 2 from Equation 1;
[tex]\begin{gathered} (3x-3x)+\lbrack5y-(-2y)\rbrack=\lbrack-2-(-16)\rbrack \\ 0+(5y+2y)=-2+16 \\ 7y=14 \end{gathered}[/tex]Step 2: Divide both sides by 7;
[tex]\begin{gathered} \frac{7y}{7}=\frac{14}{7} \\ y=2 \end{gathered}[/tex]Step 3: Substitute y in Equation 1 with 2
[tex]\begin{gathered} 3x+5(2)=-2 \\ 3x=-2-10 \\ \frac{3x}{3}=-\frac{12}{3} \\ x=-4 \end{gathered}[/tex]So the solution to the given system of equation is x = -4 and y = 2