28.06 metres
Explanation
Step 1
find the elastic potential energy
it is given by:
[tex]\begin{gathered} E_k=\frac{1}{2}kx^2 \\ \text{where kis the constant of the slingshot} \\ x\text{ is the distance} \end{gathered}[/tex]so
convert the measure into meteres and kg
[tex]\begin{gathered} 40\text{ gr =}\frac{\text{40}}{1000}kg\text{ = 0.040 }kg \\ 20cm=\text{ }\frac{\text{20}}{100}=0.2m \end{gathered}[/tex]so
[tex]\begin{gathered} E_k=\frac{1}{2}kx^2 \\ E_k=\frac{1}{2}\cdot550\frac{N}{m}\cdot(0.2)^2 \\ E_k=\frac{1}{2}\cdot550\frac{N}{m}\cdot(0.2)^2 \\ E_k=11\text{ J} \end{gathered}[/tex]Step 2
now, use the conservation of energy law to find the maximum heigth
[tex]\begin{gathered} \text{elastic energy = potential eneregy} \\ 11\text{ J = mgh} \\ so \\ h=\frac{11}{mg} \\ \text{replace} \\ h=\frac{11\text{ J}}{0.040kg\cdot9.8\frac{m}{s^2}} \\ h=28.06\text{ meters} \end{gathered}[/tex]therefore, the answer is
28.06 metres
I hope this helps you