Respuesta :

The function is given as

[tex]f(x)=\frac{3}{2-5x}[/tex]

To find the inverse of the function, replace x with y.

[tex]x=\frac{3}{2-5y}[/tex]

Now solve for y.

[tex]2-5y=\frac{3}{x}[/tex][tex]x=\frac{3}{2-5y}[/tex][tex]2x-5xy=3[/tex][tex]2x-3=5xy[/tex][tex]y=\frac{2x-3}{5x}=\frac{2}{5}-\frac{3}{5}x[/tex]

Thus the inverse of the function is

[tex]-\frac{3-2x}{5x}[/tex]

Now to find the domain of the function is

The domain of the function is the set of values of x for which the function is defined.

The domain of the inverse function is

[tex](-\infty,0)\cup(0,\infty)[/tex]

Hence the correct option is B.

[tex]\lbrace y|y\ne0,y\epsilon R\rbrace[/tex]

RELAXING NOICE
Relax