3 = 2-5x State The function f is given by f(x): the domain of f-1. A. {yly = 5, y E R} B. {yly = 0, y E R} C. {x|x = 0, X E R} D. {x|x + 5, x 6 R}

The function is given as
[tex]f(x)=\frac{3}{2-5x}[/tex]To find the inverse of the function, replace x with y.
[tex]x=\frac{3}{2-5y}[/tex]Now solve for y.
[tex]2-5y=\frac{3}{x}[/tex][tex]x=\frac{3}{2-5y}[/tex][tex]2x-5xy=3[/tex][tex]2x-3=5xy[/tex][tex]y=\frac{2x-3}{5x}=\frac{2}{5}-\frac{3}{5}x[/tex]Thus the inverse of the function is
[tex]-\frac{3-2x}{5x}[/tex]Now to find the domain of the function is
The domain of the function is the set of values of x for which the function is defined.
The domain of the inverse function is
[tex](-\infty,0)\cup(0,\infty)[/tex]Hence the correct option is B.
[tex]\lbrace y|y\ne0,y\epsilon R\rbrace[/tex]