Respuesta :
a.
When we find h(3), we found the height of a boll after 3 bounces.
Then:
[tex]h(n)=120\cdot(\frac{4}{5})^n[/tex][tex]h(3)=120\cdot(\frac{4}{5})^{3^{}}[/tex][tex]h(3)=61.44[/tex]Hence, after 3 bounces, the height of the ball is 61.44 in.
b) . Could h(n) be 150?
Let's set the equation equal to 150:
h(n)=150
[tex]120\cdot(\frac{4}{5})^n=150[/tex]Solve for n:
Divide both sides by 120:
[tex]\frac{120\cdot(\frac{4}{5})^n}{120}=\frac{150}{120}[/tex][tex](\frac{4}{5})^n=\frac{5}{4}[/tex]Where n=-1
If n represents the number of bounces, then, it can be equal to a negative number. Hence, h(n) can not be equal to 150.
c.
The equation for this ball is h(n)=120×(4/5)^n.
The equation for a tennis ball is modeled by f(n)=50×(5/9)^n.
We can set some values for n and then look at the height for each ball:
For n=2
The given ball:
h(n)=120×(4/5)^n
h(2)=120×(4/5)^2=76.8
Tennis ball
f(n)=50×(5/9)^n
f(2)=50×(5/9)^2 = 15.43
For n = 3
The given ball:
h(n)=120×(4/5)^n
h(3)=120×(4/5)^3=61.44
Tennis ball
f(n)=50×(5/9)^n
f(3)=50×(5/9)^3 = 8.57
for n=4
The given ball:
h(n)=120×(4/5)^n
h(4)=120×(4/5)^4=49.152
Tennis ball
f(n)=50×(5/9)^n
f(4)=50×(5/9)^4 = 4.76
Looking at the n number of bonces. the tennis ball is losing around the half-height after each bonce.
Hence, the tennis ball loses its height more quickly
d.
Lets set f(n)<12 inches
Then:
[tex]120\cdot(\frac{4}{5})^n<12[/tex]Solve for n:
[tex]\frac{120\cdot(\frac{4}{5})^n}{120}<\frac{12}{120}[/tex][tex](\frac{4}{5})^n<\frac{1}{10}[/tex]Then
[tex]n<\log _{\frac{4}{3}}(\frac{1}{10})[/tex][tex]n<10.311[/tex]It would take less than 10 bounces before the ball reaches the height of 12 inches.