Respuesta :

[tex]23\text{ = }\frac{1}{3b}-2+\text{ }\frac{4}{3b}[/tex]

Next, we multiply throughout by the L.C.M of the denominators ( 3b)

[tex]23\text{ ( 3b ) = ( 3b ) }\frac{1}{3b\text{ }}\text{ - 2 ( 3b ) + }\frac{4\text{ ( 3b )}}{3b}[/tex][tex]\begin{gathered} 69b\text{ = 1 - 6b + 4 } \\ 69b\text{ + 6b = 5} \\ 75b\text{ = 5} \\ b\text{ = }\frac{5}{75}\text{ = }\frac{1}{15} \end{gathered}[/tex]

Thus the value of b is

[tex]\frac{1}{15}[/tex]

RELAXING NOICE
Relax