Respuesta :

take 1/2 of the linear coefient and square it

2/3 times 1/2=1/3
square 1/3 to get 1/9

the constnat is 1/9
it would factor to (x+1/3)^2

Answer:

[tex]\frac{1}{9}[/tex]  is to be added to make [tex]x^2+\frac{2}{3}x[/tex]  a perfect square trinomial as [tex](x+\frac{1}{3})^{2}[/tex]

Step-by-step explanation:

Given : [tex]x^2+\frac{2}{3}x[/tex]  

We have to find what can be added to  [tex]x^2+\frac{2}{3}x[/tex] to form a perfect square trinomial.

Perfect square trinomial is of the form [tex](a+b)^2[/tex]

Consider the given expression [tex]x^2+\frac{2}{3}x[/tex]

Using algebraic identity [tex](a+b)^2=a^2+b^2+2ab[/tex] ,

Comparing , we get,  a = x ......(1)

[tex]2ab=\frac{2}{3}x[/tex]

Uisng (1) , we get,

[tex]2b=\frac{2}{3} \\\\ \Rightarrow b=\frac{1}{3}[/tex]

To make it  a perfect square trinomial we need to add [tex]b^2[/tex] term

[tex]b^2=\frac{1}{9}[/tex]

Thus, [tex]\frac{1}{9}[/tex]  is to be added to make [tex]x^2+\frac{2}{3}x[/tex]  a perfect square trinomial as [tex](x+\frac{1}{3})^{2}[/tex]