Respuesta :

The Solution:

Given the inequality below:

[tex]4\mleft|x+9\mright|-2>10[/tex]

We are required to solve the above inequality.

[tex]\begin{gathered} 4\mleft|x+9\mright|-2>10 \\ \text{ Add 2 to both sides, we get} \\ 4\mleft|x+9\mright|-2+2>10+2 \\ 4\mleft|x+9\mright|>12 \end{gathered}[/tex]

Dividing both sides by 4, we get

[tex]\begin{gathered} \frac{4\mleft|x+9\mright|}{4}>\frac{12}{4} \\ \\ \mleft|x+9\mright|>3 \end{gathered}[/tex]

Applying the absolute rule that states that:

[tex]\begin{gathered} \mleft|x\mright|>a,a>0\text{ means} \\ x<-a\text{ or } \\ x>a \end{gathered}[/tex]

We have:

[tex]\begin{gathered} x+9<-3\text{ or} \\ x+9>3 \end{gathered}[/tex]

Solving each of them, we have

[tex]\begin{gathered} x+9<-3 \\ x<-3-9 \\ x<-12 \end{gathered}[/tex]

Or

[tex]\begin{gathered} x+9>3 \\ x>3-9 \\ x>-6 \end{gathered}[/tex]

Therefore, the correct answer is:

[tex]\begin{gathered} x<-12\text{ or} \\ x>-6 \end{gathered}[/tex]

RELAXING NOICE
Relax