What is the measurement of the largest angle in ΔABC such that a = 15 cm, b = 41 cm, and c = 29 cm? 135.0° 106.2° 50.0° 30.0°

From the given question
There are given that the sides of the triangle:
[tex]a=15\operatorname{cm},\text{ b=41 cm, c=29 cm}[/tex]Now,
Find the first angle by using the cosine rule
So,
For angle A,
[tex]a^2=b^2+c^2-2bc\cos A[/tex]Then,
[tex]\begin{gathered} a^2=b^2+c^2-2bc\cos A \\ 15^2=41^2+29^2-2\times41\times29\times\cos A \\ 225^{}=1681+841-2378\times\cos A \\ 225=2522-2378\cos A \\ -2297=-2378\cos A \\ \cos A=\frac{2297}{2378} \\ \cos A=0.96 \end{gathered}[/tex]Then,
[tex]\begin{gathered} A=\cos ^{-1}(0.96) \\ A=16.26 \end{gathered}[/tex]Now,
for the second angle B,
Use sine law:
So,
[tex]\begin{gathered} \frac{\sin A}{a}=\frac{\sin B}{b} \\ \frac{\sin16.26}{15}=\frac{\sin B}{41} \\ \sin B\times15=\sin 16.26\times41 \\ \sin B=\frac{\sin16.26\times41}{15} \\ \sin B=\frac{11.5}{15} \\ \sin B=0.76 \end{gathered}[/tex]Then,
[tex]\begin{gathered} \sin B=0.76 \\ B=135.0 \end{gathered}[/tex]Now,
For the third angle:
[tex]\begin{gathered} \angle A+\angle B+\angle C=180^{\circ} \\ 16.26+135+\angle C=180^{\circ} \\ \angle C=28.74 \end{gathered}[/tex]Hence, the correct option is A.