the first three steps in determining the solution set of the system of equations algebraically are shown in the table. y = −x2 +2x − 9 y = −6x + 6 What are the solutions of this system of equations? (5, −24) and (3, −12) (5, 36) and (3, 24) (−5, −24) and (−3, 12) (−5, 36) and (−3, 24)

Respuesta :

it is A! I know because i just took the test!

Answer:

[tex](5,-24)[/tex] and  [tex](3,-12)[/tex]

Step-by-step explanation:

we have

[tex]y=-x^{2} +2x-9[/tex] -----> equation A

[tex]y=-6x+6[/tex] -----> equation B

equate the equation A and equation B

[tex]-x^{2} +2x-9=-6x+6[/tex]

[tex]-x^{2} +2x-9+6x-6=0[/tex]

[tex]-x^{2} +8x-15=0[/tex]

The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to


[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]


in this problem we have


[tex]-x^{2} +8x-15=0[/tex]

so


[tex]a=-1\\b=8\\c=-15[/tex]


substitute in the formula


[tex]x=\frac{-8(+/-)\sqrt{8^{2}-4(-1)(-15)}} {2(-1)}[/tex]


[tex]x=\frac{-8(+/-)\sqrt{64-60}} {-2}[/tex]


[tex]x=\frac{-8(+/-)2}{-2} [/tex]


[tex]x=\frac{-8+2}{-2}=3[/tex]


[tex]x=\frac{-8-2}{-2}=5[/tex]


Find the values of y

For [tex]x=3[/tex]

[tex]y=-6x+6[/tex] ------> [tex]y=-6(3)+6=-12[/tex]

For [tex]x=5[/tex]

[tex]y=-6x+6[/tex] ------> [tex]y=-6(5)+6=-24[/tex]

The solutions are the points [tex](3,-12)[/tex] and [tex](5,-24)[/tex]

ACCESS MORE