Given that the spring constant of the ligament is
[tex]\begin{gathered} K=150\text{ N/mm} \\ =\frac{150N}{10^{-3}\text{ m}} \\ =150\times10^3\text{ N/m} \end{gathered}[/tex]The displacement of the ligament is
[tex]\begin{gathered} x=0.78\text{ cm} \\ =0.78\times10^{-2}\text{ }m \end{gathered}[/tex]We have to find elastic energy.
Elastic energy is given by the formula
[tex]U=\frac{1}{2}kx^2[/tex]Substituting the values, the elastic energy will be
[tex]\begin{gathered} U=\frac{1}{2}\times(150\times10^3)\text{ }\times(0.78\times10^{-2})^2 \\ =\text{ 5.85 J} \end{gathered}[/tex]Thus, the elastic energy of the ligament is 5.85 J.