Given:
The separation between the slits is,
[tex]d=8.60\times10^{-4}\text{ m}[/tex]The distance between the slit and the screen is,
[tex]D=5.00\text{ m}[/tex]The separation between the central maximum and the first dark fringe is,
[tex]\begin{gathered} y=4.5\text{ mm} \\ =4.5\times10^{-3}\text{ m} \end{gathered}[/tex]To find:
The wavelength of the light
Explanation:
The diagram of the arrangement is shown below:
The separation between the central fringe and the mth bright fringe is,
[tex]dsin\theta=m\lambda[/tex]Here,
[tex]\begin{gathered} m=1 \\ tan\theta=\frac{y}{D} \\ tan\theta=\frac{4.5\times10^{-3}}{5.00} \\ \theta=tan^{-1}(9\times10^{-4}) \\ \theta=0.051\degree \end{gathered}[/tex]Now we can write,
[tex]\begin{gathered} 8.60\times10^{-4}\times sin(0.051\degree)=1\times\lambda \\ \lambda=7.65\times10^{-7}\text{ m} \end{gathered}[/tex]Hence, the wavelength is
[tex]7.65\times10^{-7}\text{ m}[/tex]